Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 711
Filtrar
1.
Biol Res ; 57(1): 12, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561836

RESUMO

BACKGROUND: Bacterial aromatic degradation may cause oxidative stress. The long-chain flavodoxin FldX1 of Paraburkholderia xenovorans LB400 counteracts reactive oxygen species (ROS). The aim of this study was to evaluate the protective role of FldX1 in P. xenovorans LB400 during the degradation of 4-hydroxyphenylacetate (4-HPA) and 3-hydroxyphenylacetate (3-HPA). METHODS: The functionality of FldX1 was evaluated in P. xenovorans p2-fldX1 that overexpresses FldX1. The effects of FldX1 on P. xenovorans were studied measuring growth on hydroxyphenylacetates, degradation of 4-HPA and 3-HPA, and ROS formation. The effects of hydroxyphenylacetates (HPAs) on the proteome (LC-MS/MS) and gene expression (qRT-PCR) were quantified. Bioaugmentation with strain p2-fldX1 of 4-HPA-polluted soil was assessed, measuring aromatic degradation (HPLC), 4-HPA-degrading bacteria, and plasmid stability. RESULTS: The exposure of P. xenovorans to 4-HPA increased the formation of ROS compared to 3-HPA or glucose. P. xenovorans p2-fldX1 showed an increased growth on 4-HPA and 3-HPA compared to the control strain WT-p2. Strain p2-fldX1 degraded faster 4-HPA and 3-HPA than strain WT-p2. Both WT-p2 and p2-fldX1 cells grown on 4-HPA displayed more changes in the proteome than cells grown on 3-HPA in comparison to glucose-grown cells. Several enzymes involved in ROS detoxification, including AhpC2, AhpF, AhpD3, KatA, Bcp, CpoF1, Prx1 and Prx2, were upregulated by hydroxyphenylacetates. Downregulation of organic hydroperoxide resistance (Ohr) and DpsA proteins was observed. A downregulation of the genes encoding scavenging enzymes (katE and sodB), and gstA and trxB was observed in p2-fldX1 cells, suggesting that FldX1 prevents the antioxidant response. More than 20 membrane proteins, including porins and transporters, showed changes in expression during the growth of both strains on hydroxyphenylacetates. An increased 4-HPA degradation by recombinant strain p2-fldX1 in soil microcosms was observed. In soil, the strain overexpressing the flavodoxin FldX1 showed a lower plasmid loss, compared to WT-p2 strain, suggesting that FldX1 contributes to bacterial fitness. Overall, these results suggest that recombinant strain p2-fldX1 is an attractive bacterium for its application in bioremediation processes of aromatic compounds. CONCLUSIONS: The long-chain flavodoxin FldX1 improved the capability of P. xenovorans to degrade 4-HPA in liquid culture and soil microcosms by protecting cells against the degradation-associated oxidative stress.


Assuntos
Burkholderia , Burkholderiaceae , Flavodoxina , Gliceraldeído/análogos & derivados , Fenilacetatos , Propano , Biodegradação Ambiental , Flavodoxina/metabolismo , Flavodoxina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteoma/metabolismo , Proteoma/farmacologia , Cromatografia Líquida , Burkholderia/genética , Burkholderia/metabolismo , Espectrometria de Massas em Tandem , Estresse Oxidativo , Glucose/metabolismo , Solo
2.
FEBS Lett ; 598(6): 670-683, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433717

RESUMO

Ferredoxin/flavodoxin-NADPH reductases (FPRs) catalyze the reversible electron transfer between NADPH and ferredoxin/flavodoxin. The Acinetobacter sp. Ver3 isolated from high-altitude Andean lakes contains two isoenzymes, FPR1ver3 and FPR2ver3. Absorption spectra of these FPRs revealed typical features of flavoproteins, consistent with the use of FAD as a prosthetic group. Spectral differences indicate distinct electronic arrangements for the flavin in each enzyme. Steady-state kinetic measurements show that the enzymes display catalytic efficiencies in the order of 1-6 µm-1·s-1, although FPR1ver3 exhibited higher kcat values compared to FPR2ver3. When flavodoxinver3 was used as a substrate, both reductases exhibited dissimilar behavior. Moreover, only FPR1ver3 is induced by oxidative stimuli, indicating that the polyextremophile Ver3 has evolved diverse strategies to cope with oxidative environments.


Assuntos
Ferredoxinas , Flavodoxina , Flavodoxina/metabolismo , NADP/metabolismo , Ferredoxinas/metabolismo , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/metabolismo , Isoformas de Proteínas , Cinética
3.
Microbiol Spectr ; 12(3): e0189523, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38319052

RESUMO

Clostridioides difficile infections have become a major challenge in medical facilities. The bacterium is capable of spore formation allowing the survival of antibiotic treatment. Therefore, research on the physiology of C. difficile is important for the development of alternative treatment strategies. In this study, we investigated eight putative flavodoxins of C. difficile 630. Flavodoxins are small electron transfer proteins of specifically low potential. The unusually high number of flavodoxins in C. difficile suggests that they are expressed under different conditions. We determined high transcription levels for several flavodoxins during the exponential growth phase, especially for floX. Since flavodoxins are capable of replacing ferredoxins under iron deficiency conditions in other bacteria, we also examined their expression in C. difficile under low iron and no iron levels. In particular, the amount of fldX increased with decreasing iron concentration and thus could possibly replace ferredoxins. Moreover, we demonstrated that fldX is increasingly expressed under different oxidative stress conditions and thus may play an important role in the oxidative stress response. While increased fldX expression was detectable at both RNA and protein level, CD2825 showed increased expression only at mRNA level under H2O2 stress with sufficient iron availability and may indicate hydroxyl radical-dependent transcription. Although the exact function of the individual flavodoxins in C. difficile needs to be further investigated, the present study shows that flavodoxins could play an important role in several physiological processes and under infection-relevant conditions. IMPORTANCE: The gram-positive, anaerobic, and spore-forming bacterium Clostridioides difficile has become a vast problem in human health care facilities. The antibiotic-associated infection with this intestinal pathogen causes serious and recurrent inflammation of the intestinal epithelium, in many cases with a severe course. To come up with novel targeted therapies against C. difficile infections, a more detailed knowledge on the pathogen's physiology is mandatory. Eight putative flavodoxins, an extraordinarily high copy number of this type of small electron transfer proteins, are annotated for C. difficile. Flavodoxins are known to be essential electron carriers in other bacteria, for instance, during infection-relevant conditions such as iron limitation and oxidative stress. This work is a first and comprehensive overview on characteristics and expression profiles of the putative flavodoxins in the pathogen C. difficile.


Assuntos
Clostridioides difficile , Flavodoxina , Humanos , Flavodoxina/metabolismo , Clostridioides difficile/genética , Clostridioides , Ferredoxinas , Peróxido de Hidrogênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ferro/metabolismo
4.
Microbiol Spectr ; 12(1): e0262323, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38084974

RESUMO

IMPORTANCE: The antimicrobial resistance of Helicobacter pylori (Hp) currently poses a threat to available treatment regimens. Developing antimicrobial drugs targeting new bacterial targets is crucial, and one such class of drugs includes Hp-flavodoxin (Hp-fld) inhibitors that target an essential metabolic pathway in Hp. Our study demonstrated that combining these new drugs with conventional antibiotics used for Hp infection treatment prevented the regrowth observed with drugs used alone. Hp-fld inhibitors show promise as new drugs to be incorporated into the treatment of Hp infection, potentially reducing the development of resistance and shortening the treatment duration.


Assuntos
Anti-Infecciosos , Infecções por Helicobacter , Helicobacter pylori , Humanos , Flavodoxina/metabolismo , Helicobacter pylori/metabolismo , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia
5.
FEBS J ; 291(6): 1275-1294, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38129989

RESUMO

Flavodiiron proteins (FDPs) are a family of enzymes with a significant role in O2 /H2 O2 and/or NO detoxification through the reduction of these species to H2 O or N2 O, respectively. All FDPs contain a minimal catalytic unit of two identical subunits, each one having a metallo-ß-lactamase-like domain harboring the catalytic diiron site, and a flavodoxin-like domain. However, more complex and diverse arrangements in terms of domains are found in this family, of which the class H enzymes are among the most complex. One of such FDPs is encoded in the genome of the anaerobic bacterium Syntrophomonas wolfei subsp. wolfei str. Goettingen G311. Besides the core domains, this protein is predicted to have three additional ones after the flavodoxin core domain: two short-chain rubredoxins and a NAD(P)H:rubredoxin oxidoreductase-like domain. This enzyme, FDP_H, was produced and characterized and the presence of the predicted cofactors was investigated by a set of biochemical and spectroscopic methodologies. Syntrophomonas wolfei FDP_H exhibited a remarkable O2 reduction activity with a kcat = 52.0 ± 1.2 s-1 and a negligible NO reduction activity (~ 100 times lower than with O2 ), with NADH as an electron donor, that is, it is an oxygen-selective FDP. In addition, this enzyme showed the highest turnover value for H2 O2 reduction (kcat = 19.1 ± 2.2 s-1 ) ever observed among FDPs. Kinetic studies of site-directed mutants of iron-binding cysteines at the two rubredoxin domains demonstrated the essential role of these centers since their absence leads to a significant decrease or even abolishment of O2 and H2 O2 reduction activities.


Assuntos
Clostridiales , NAD , Oxirredutases , Oxirredutases/metabolismo , NAD/metabolismo , Flavodoxina/metabolismo , Cinética , Composição de Bases , Filogenia , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Oxigênio/metabolismo , Oxirredução
6.
J Phys Chem Lett ; 14(47): 10657-10663, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38031667

RESUMO

The understanding of ultrafast short-range electron transfer (ET) in proteins remains challenging, and thorough studies on well-defined biological systems are demanding. Here, we utilized two types of flavodoxins and designed a series of mutants on two positions to systematically characterize the complete photoinduced redox cycles. We identified one position with a favorable orientation and distance for ultrafast ET in a few femtoseconds and the other position is relatively flexible with a longer ET time scale. We found that all forward and back ET dynamics are ultrafast nonequilibrium processes, occurring through highly vibronic states and ending in vibrationally hot ground states with subsequent cooling relaxation to efficiently dissipate photon energy into the protein environment.


Assuntos
Elétrons , Flavodoxina , Flavodoxina/metabolismo , Transporte de Elétrons , Oxirredução
7.
mSphere ; 8(6): e0050723, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38032185

RESUMO

IMPORTANCE: Candida albicans is an important human pathogen that can cause lethal systemic infections. The ability of C. albicans to colonize and establish infections is closely tied to its highly adaptable nature and capacity to resist various types of stress, including oxidative stress. Previous studies showed that four C. albicans proteins belonging to the flavodoxin-like protein family of quinone reductases are needed for resistance to quinones and virulence. Therefore, in this study, we examined the role of a distinct type of quinone reductase, Zta1, and found that it acts in conjunction with the flavodoxin-like proteins to protect against oxidative stress.


Assuntos
Candida albicans , zeta-Cristalinas , Humanos , zeta-Cristalinas/metabolismo , Flavodoxina/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Estresse Oxidativo
9.
Molecules ; 28(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630271

RESUMO

Flavodoxins are enzymes that contain the redox-active flavin mononucleotide (FMN) cofactor and play a crucial role in numerous biological processes, including energy conversion and electron transfer. Since the redox characteristics of flavodoxins are significantly impacted by the molecular environment of the FMN cofactor, the evaluation of the interplay between the redox properties of the flavin cofactor and its molecular surroundings in flavoproteins is a critical area of investigation for both fundamental research and technological advancements, as the electrochemical tuning of flavoproteins is necessary for optimal interaction with redox acceptor or donor molecules. In order to facilitate the rational design of biomolecular devices, it is imperative to have access to computational tools that can accurately predict the redox potential of both natural and artificial flavoproteins. In this study, we have investigated the feasibility of using non-equilibrium thermodynamic integration protocols to reliably predict the redox potential of flavodoxins. Using as a test set the wild-type flavodoxin from Clostridium Beijerinckii and eight experimentally characterized single-point mutants, we have computed their redox potential. Our results show that 75% (6 out of 8) of the calculated reaction free energies are within 1 kcal/mol of the experimental values, and none exceed an error of 2 kcal/mol, confirming that non-equilibrium thermodynamic integration is a trustworthy tool for the quantitative estimation of the redox potential of this biologically and technologically significant class of enzymes.


Assuntos
Clostridium beijerinckii , Flavodoxina , Termodinâmica , Flavoproteínas , Transporte de Elétrons
10.
Elife ; 122023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37278403

RESUMO

Phytoplankton rely on diverse mechanisms to adapt to the decreased iron bioavailability and oxidative stress-inducing conditions of today's oxygenated oceans, including replacement of the iron-requiring ferredoxin electron shuttle protein with a less-efficient iron-free flavodoxin under iron-limiting conditions. Yet, diatoms transcribe flavodoxins in high-iron regions in contrast to other phytoplankton. Here, we show that the two clades of flavodoxins present within diatoms exhibit a functional divergence, with only clade II flavodoxins displaying the canonical role in acclimation to iron limitation. We created CRISPR/Cas9 knock-outs of the clade I flavodoxin from the model diatom Thalassiosira pseudonana and found that these cell lines are hypersensitive to oxidative stress, while maintaining a wild-type response to iron limitation. Within natural diatom communities, clade I flavodoxin transcript abundance is regulated over the diel cycle rather than in response to iron availability, whereas clade II transcript abundances increase either in iron-limiting regions or under artificially induced iron limitation. The observed functional specialization of two flavodoxin variants within diatoms reiterates two major stressors associated with contemporary oceans and illustrates diatom strategies to flourish in diverse aquatic ecosystems.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Flavodoxina/genética , Flavodoxina/metabolismo , Ecossistema , Estresse Oxidativo , Proteínas/metabolismo
11.
Microbiol Spectr ; 11(4): e0473322, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37314331

RESUMO

Bacteria have to persist under low iron conditions in order to adapt to the nutritional immunity of a host. Since the knowledge of iron stimulon of Bacteroidetes is sparse, we examined oral (Porphyromonas gingivalis and Prevotella intermedia) and gut (Bacteroides thataiotaomicron) representatives for their ability to adapt to iron deplete and iron replete conditions. Our transcriptomics and comparative genomics analysis show that many iron-regulated mechanisms are conserved within the phylum. They include genes upregulated in low iron, as follows: fldA (flavodoxin), hmu (hemin uptake operon), and loci encoding ABC transporters. Downregulated genes were frd (ferredoxin), rbr (rubrerythrin), sdh (succinate dehydrogenase/fumarate reductase), vor (oxoglutarate oxidoreductase/dehydrogenase), and pfor (pyruvate:ferredoxin/flavodoxin oxidoreductase). Some genus-specific mechanisms, such as the sus of B. thetaiotaomicron coding for carbohydrate metabolism and the xusABC coding for xenosiderophore utilization were also identified. While all bacteria tested in our study had the nrfAH operon coding for nitrite reduction and were able to reduce nitrite levels present in culture media, the expression of the operon was iron dependent only in B. thetaiotaomicron. It is noteworthy that we identified a significant overlap between regulated genes found in our study and the B. thetaiotaomicron colitis study (W. Zhu, M. G. Winter, L. Spiga, E. R. Hughes et al., Cell Host Microbe 27:376-388, 2020, http://dx.doi.org/10.1016/j.chom.2020.01.010). Many of those commonly regulated genes were also iron regulated in the oral bacterial genera. Overall, this work points to iron being the master regulator enabling bacterial persistence in the host and paves the way for a more generalized investigation of the molecular mechanisms of iron homeostasis in Bacteroidetes. IMPORTANCE Bacteroidetes are an important group of anaerobic bacteria abundant both in the oral and gut microbiomes. Although iron is a required nutrient for most living organisms, the molecular mechanisms of adaptation to the changing levels of iron are not well known in this group of bacteria. We defined the iron stimulon of Bacteroidetes by examination of the transcriptomic response of Porphyromonas gingivalis and Prevotella intermedia (both belong to the oral microbiome) and Bacteroidetes thetaiotaomicron (belongs to the gut microbiome). Our results indicate that many of the iron-regulated operons are shared among the three genera. Furthermore, using bioinformatics analysis, we identified a significant overlap between our in vitro studies and transcriptomic data derived from a colitis study, thus underscoring the biological significance of our work. Defining the iron-dependent stimulon of Bacteroidetes can help to identify the molecular mechanisms of iron-dependent regulation as well as better understand the persistence of the anaerobes in the human host.


Assuntos
Colite , Deficiências de Ferro , Humanos , Bacteroidetes/genética , Bacteroidetes/metabolismo , Ferredoxinas/metabolismo , Flavodoxina/metabolismo , Nitritos/metabolismo , Porphyromonas gingivalis/metabolismo , Ferro/metabolismo , Inflamação
12.
J Biol Chem ; 299(7): 104902, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37302554

RESUMO

Fusobacterium nucleatum is an opportunistic oral pathogen that is associated with various cancers. To fulfill its essential need for iron, this anaerobe will express heme uptake machinery encoded at a single genetic locus. The heme uptake operon includes HmuW, a class C radical SAM-dependent methyltransferase that degrades heme anaerobically to release Fe2+ and a linear tetrapyrrole called anaerobilin. The last gene in the operon, hmuF encodes a member of the flavodoxin superfamily of proteins. We discovered that HmuF and a paralog, FldH, bind tightly to both FMN and heme. The structure of Fe3+-heme-bound FldH (1.6 Å resolution) reveals a helical cap domain appended to the ⍺/ß core of the flavodoxin fold. The cap creates a hydrophobic binding cleft that positions the heme planar to the si-face of the FMN isoalloxazine ring. The ferric heme iron is hexacoordinated to His134 and a solvent molecule. In contrast to flavodoxins, FldH and HmuF do not stabilize the FMN semiquinone but instead cycle between the FMN oxidized and hydroquinone states. We show that heme-loaded HmuF and heme-loaded FldH traffic heme to HmuW for degradation of the protoporphyrin ring. Both FldH and HmuF then catalyze multiple reductions of anaerobilin through hydride transfer from the FMN hydroquinone. The latter activity eliminates the aromaticity of anaerobilin and the electrophilic methylene group that was installed through HmuW turnover. Hence, HmuF provides a protected path for anaerobic heme catabolism, offering F. nucleatum a competitive advantage in the colonization of anoxic sites of the human body.


Assuntos
Flavodoxina , Fusobacterium nucleatum , Heme , Tetrapirróis , Humanos , Mononucleotídeo de Flavina/metabolismo , Flavodoxina/química , Flavodoxina/classificação , Flavodoxina/genética , Flavodoxina/metabolismo , Fusobacterium nucleatum/química , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/metabolismo , Heme/metabolismo , Ferro/metabolismo , Oxirredução , Tetrapirróis/metabolismo , Transporte Biológico , Genes Bacterianos , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínios Proteicos , Infecções por Fusobacterium/microbiologia
13.
Plant J ; 115(2): 369-385, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37009644

RESUMO

Maintenance of stable mitochondrial respiratory chains could enhance adaptability to high temperature, but the potential mechanism was not elucidated clearly in plants. In this study, we identified and isolated a TrFQR1 gene encoding the flavodoxin-like quinone reductase 1 (TrFQR1) located in mitochondria of leguminous white clover (Trifolium repens). Phylogenetic analysis indicated that amino acid sequences of FQR1 in various plant species showed a high degree of similarities. Ectopic expression of TrFQR1 protected yeast (Saccharomyces cerevisiae) from heat damage and toxic levels of benzoquinone, phenanthraquinone and hydroquinone. Transgenic Arabidopsis thaliana and white clover overexpressing TrFQR1 exhibited significantly lower oxidative damage and better photosynthetic capacity and growth than wild-type in response to high-temperature stress, whereas AtFQR1-RNAi A. thaliana showed more severe oxidative damage and growth retardation under heat stress. TrFQR1-transgenic white clover also maintained better respiratory electron transport chain than wild-type plants, as manifested by significantly higher mitochondrial complex II and III activities, alternative oxidase activity, NAD(P)H content, and coenzyme Q10 content in response to heat stress. In addition, overexpression of TrFQR1 enhanced the accumulation of lipids including phosphatidylglycerol, monogalactosyl diacylglycerol, sulfoquinovosyl diacylglycerol and cardiolipin as important compositions of bilayers involved in dynamic membrane assembly in mitochondria or chloroplasts positively associated with heat tolerance. TrFQR1-transgenic white clover also exhibited higher lipids saturation level and phosphatidylcholine:phosphatidylethanolamine ratio, which could be beneficial to membrane stability and integrity during a prolonged period of heat stress. The current study proves that TrFQR1 is essential for heat tolerance associated with mitochondrial respiratory chain, cellular reactive oxygen species homeostasis, and lipids remodeling in plants. TrFQR1 could be selected as a key candidate marker gene to screen heat-tolerant genotypes or develop heat-tolerant crops via molecular-based breeding.


Assuntos
Arabidopsis , Trifolium , Trifolium/genética , Trifolium/metabolismo , Flavodoxina/genética , Flavodoxina/metabolismo , Diglicerídeos/metabolismo , Filogenia , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Oxidativo , Arabidopsis/genética , Arabidopsis/metabolismo , Homeostase , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
14.
Biochem Biophys Res Commun ; 639: 134-141, 2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36493556

RESUMO

In cyanobacteria and algae (but not plants), flavodoxin (Fld) replaces ferredoxin (Fd) under stress conditions to transfer electrons from photosystem I (PSI) to ferredoxin-NADP+ reductase (FNR) during photosynthesis. Fld constitutes a small electron carrier noncovalently bound to flavin mononucleotide (FMN), and also an ideal model for revealing the protein/flavin-binding mechanism because of its relative simplicity compared to other flavoproteins. Here, we report two crystal structures of apo-Fld from Synechococcus sp. PCC 7942, one dimeric structure of 2.09 Å and one monomeric structure of 1.84 Å resolution. Analytical ultracentrifugation showed that in solution, apo-Fld exists both as monomers and dimers. Our dimer structure contains two ligand-binding pockets separated by a distance of 45 Å, much longer than the previous structures of FMN-bound dimers. These results suggested a potential dimer-monomer transition mechanism of cyanobacterial apo-Fld. We further propose that the dimer represents the "standby" state to stabilize itself, while the monomer constitutes the "ready" state to bind FMN. Furthermore, we generated a new docking model of cyanobacterial Fld-FNR complex based on the recently reported cryo-EM structures, and mapped the special interactions between Fld and FNR in detail.


Assuntos
Anabaena , Cianobactérias , Flavodoxina/química , Flavodoxina/metabolismo , Ferredoxinas/metabolismo , Anabaena/metabolismo , Flavoproteínas , Ferredoxina-NADP Redutase/química , Cianobactérias/metabolismo , Oxirredução
15.
Protein Sci ; 31(11): e4445, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36156320

RESUMO

Molten globule (MG) is the name given to a compact, non-native conformation of proteins that has stimulated the imagination and work in the protein folding field for more than 40 years. The MG has been proposed to play a central role in the folding reaction and in important cell functions, and to be related to the onset of misfolding diseases. Due to its inherent intractability to high-resolution studies, atomistic structural models have not yet been obtained. We present here an integrative atomistic model of the MG formed at acidic pH by the apoflavodoxin from the human pathogen Helicobacter pylori. This MG has been previously shown to exhibit the archetypical expansion, spectroscopic and thermodynamic features of a molten conformation. To obtain the model, we have analyzed the stability of wild-type and 55 apoflavodoxin mutants to derive experimental equilibrium Φ values that have been used in biased molecular dynamics simulations to convert the native conformation into an MG ensemble. The ensemble has been refined to reproduce the experimental hydrodynamic radius and circular dichroism (CD) spectrum. The refined ensemble, deposited in PDB-Dev, successfully explains the characteristic 1 H-nuclear magnetic resonance (NMR) and near-UV CD spectral features of the MG as well as its solvent-accessible surface area (SASA) change upon unfolding. This integrative model of an MG will help to understand the energetics and roles of these elusive conformations in protein folding and misfolding. Interestingly, the apoflavodoxin MG is structurally unrelated to previously described partly unfolded conformations of this protein, exemplifying that equilibrium MGs need not to reflect the properties of kinetic intermediates.


Assuntos
Helicobacter pylori , Humanos , Helicobacter pylori/metabolismo , Flavodoxina/química , Dobramento de Proteína , Dicroísmo Circular , Modelos Estruturais , Concentração de Íons de Hidrogênio , Conformação Proteica
16.
Biomolecules ; 12(8)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36009001

RESUMO

Flavodoxins are small electron transport proteins that are involved in a myriad of photosynthetic and non-photosynthetic metabolic pathways in Bacteria (including cyanobacteria), Archaea and some algae. The sequenced genome of 0305φ8-36, a large bacteriophage that infects the soil bacterium Bacillus thuringiensis, was predicted to encode a putative flavodoxin redox protein. Here we confirm that 0305φ8-36 phage encodes a FMN-containing flavodoxin polypeptide and we report the expression, purification and enzymatic characterization of the recombinant protein. Purified 0305φ8-36 flavodoxin has near-identical spectral properties to control, purified Escherichia coli flavodoxin. Using in vitro assays we show that 0305φ8-36 flavodoxin can be reconstituted with E. coli flavodoxin reductase and support regio- and stereospecific cytochrome P450 CYP170A1 allyl-oxidation of epi-isozizaene to the sesquiterpene antibiotic product albaflavenone, found in the soil bacterium Streptomyces coelicolor. In vivo, 0305φ8-36 flavodoxin is predicted to mediate the 2-electron reduction of the ß subunit of phage-encoded ribonucleotide reductase to catalyse the conversion of ribonucleotides to deoxyribonucleotides during viral replication. Our results demonstrate that this phage flavodoxin has the potential to manipulate and drive bacterial P450 cellular metabolism, which may affect both the host biological fitness and the communal microbiome. Such a scenario may also be applicable in other viral-host symbiotic/parasitic relationships.


Assuntos
Flavodoxina , Streptomyces coelicolor , Sistema Enzimático do Citocromo P-450/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Flavodoxina/química , Flavodoxina/genética , Flavodoxina/metabolismo , Oxirredução , Solo , Streptomyces coelicolor/metabolismo
17.
J Phys Chem Lett ; 13(14): 3202-3208, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35377652

RESUMO

Short-range protein electron transfer (ET) is crucially important in light-induced biological processes such as in photoenzymes and photoreceptors and often occurs on time scales similar to those of environment fluctuations, leading to a coupled dynamic process. Herein, we use semiquinone Anabaena flavodoxin to characterize the ultrafast photoinduced redox cycle of the wild type and seven mutants by ultrafast spectroscopy. We have found that the forward and backward ET dynamics show stretched behaviors in a few picoseconds (1-5 ps), indicating a coupling with the local protein fluctuations. By comparison with the results from semiquinone D. vulgaris flavodoxin, we find that the electronic coupling is crucial to the ET rates. With our new nonergodic model, we obtain smaller values of the outer reorganization energy (λoγ) of environment fluctuations and the reaction free energy force (ΔGγ), a signature of nonequilibrium ET dynamics.


Assuntos
Transporte de Elétrons , Elétrons , Flavodoxina , Anabaena/metabolismo , Transporte de Elétrons/fisiologia , Flavodoxina/química , Flavodoxina/metabolismo , Oxirredução , Proteínas/metabolismo , Termodinâmica
18.
Biotechnol Lett ; 44(3): 503-511, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35124760

RESUMO

OBJECTIVE: This study aimed to identify genes related to freeze-thaw tolerance and elucidate the tolerance mechanism in yeast Saccharomyces cerevisiae as an appropriate eukaryote model. RESULTS: In this study, one tolerant strain exposed to freeze-thaw stress was isolated by screening a transposon-mediated mutant library and the disrupted gene was identified to be YCP4. In addition, this phenotype related to freeze-thaw tolerance was confirmed by deletion and overexpressing of this corresponding gene. This mutant strain showed a freeze-thaw tolerance by reducing the intracellular level of reactive oxygen species and the activation of the MSN2/4 and STRE-mediated genes such as CTT1 and HSP12. CONCLUSIONS: Disruption of YCP4 in S. cerevisiae results in increased tolerance to freeze-thaw stress.


Assuntos
Flavodoxina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ligação a DNA/genética , Tolerância a Medicamentos , Flavodoxina/genética , Congelamento , Espécies Reativas de Oxigênio , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
19.
Protoplasma ; 259(4): 965-979, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34686944

RESUMO

Excessive heavy metal (HM) levels in soil have become a source of concern due to their adverse effects on human health and the agriculture industry. Soil contamination by HMs leads to an accumulation of reactive oxygen species (ROSs) within the plant cell and disruption of photosynthesis-related proteins. The response of tobacco lines overexpressing flavodoxin (Fld) and betaine aldehyde dehydrogenase (BADH) to cadmium (Cd) toxicity was investigated in this study. PCR results demonstrated the expected amplicon length of each gene in the transgenic lines. Absolute qRT-PCR demonstrates a single copy of T-DNA integration into each transgenic line. Relative qRT-PCR confirmed overexpression of Fld and BADH in transgenic lines. The maximum quantum yield of photosystem II (Fv/Fm) was measured under Cd toxicity stress and revealed that transgenic lines had a higher Fv/Fm than wild-type (WT) plants. Accumulation of proline, glycine betaine (GB), and higher activity of antioxidant enzymes alongside lower levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) was indicative of a robust antioxidant system in transgenic plants. Therefore, performing a loop in reducing the ROS produced in the photosynthesis electron transport chain and stimulating the ROS scavenger enzyme activity improved the plant tolerance to Cd stress.


Assuntos
Betaína-Aldeído Desidrogenase , Cádmio , Antioxidantes/metabolismo , Betaína/metabolismo , Betaína-Aldeído Desidrogenase/genética , Betaína-Aldeído Desidrogenase/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Flavodoxina/genética , Flavodoxina/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Espécies Reativas de Oxigênio/metabolismo , Solo , /genética
20.
Phys Chem Chem Phys ; 24(1): 382-391, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34889914

RESUMO

Short-range protein electron transfer (ET) is ubiquitous in biology and is often observed in photosynthesis, photoreceptors and photoenzymes. These ET processes occur on an ultrafast timescale from femtoseconds to picoseconds at a short donor-acceptor distance within 10 Å, and thus couple with local environmental fluctuations. Here, we use oxidized Anabaena flavodoxin as a model system and have systematically studied the photoinduced redox cycle of the wild type and seven mutant proteins by femtosecond spectroscopy. We observed a series of ultrafast dynamics from the initial charge separation in 100-200 fs, subsequent charge recombination in 1-2 ps and final vibrational cooling process of the products in 3-6 ps. We further characterized the active-site solvation and observed the relaxations in 1-200 ps, indicating a nonergodic ET dynamics. With our new ET model, we uncovered a minor outer (solvent) reorganization energy and a large inner (donor and acceptor) reorganization energy, suggesting a frozen active site in the initial ultrafast ET while the back ET couples with the environment relaxations. The vibronically coupled back ET dynamics was first reported in D. vulgaris flavodoxin and here is observed in Anabaena flavodoxin again, completely due to the faster ET dynamics than the cooling relaxations. We also compared the two flavodoxin structures, revealing a stronger coupling with the donor tyrosine in Anabaena. All ultrafast ET dynamics are from the large donor-acceptor couplings and the minor activation barriers due to the reaction free energies being close to the inner reorganization energies. These observations should be general to many redox reactions in flavoproteins.


Assuntos
Flavodoxina/metabolismo , Simulação de Dinâmica Molecular , Proteínas/metabolismo , Anabaena/química , Anabaena/metabolismo , Transporte de Elétrons , Flavodoxina/química , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...